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Abstract

Data assimilation is a valuable tool in the study of any complex system, where measurements are incomplete, uncertain, or
both. It enables the user to take advantage of all available information including experimental measurements and short-
term model forecasts of a system. Although data assimilation has been used to study other biological systems, the study of
the sleep-wake regulatory network has yet to benefit from this toolset. We present a data assimilation framework based on
the unscented Kalman filter (UKF) for combining sparse measurements together with a relatively high-dimensional
nonlinear computational model to estimate the state of a model of the sleep-wake regulatory system. We demonstrate with
simulation studies that a few noisy variables can be used to accurately reconstruct the remaining hidden variables. We
introduce a metric for ranking relative partial observability of computational models, within the UKF framework, that allows
us to choose the optimal variables for measurement and also provides a methodology for optimizing framework parameters
such as UKF covariance inflation. In addition, we demonstrate a parameter estimation method that allows us to track non-
stationary model parameters and accommodate slow dynamics not included in the UKF filter model. Finally, we show that
we can even use observed discretized sleep-state, which is not one of the model variables, to reconstruct model state and
estimate unknown parameters. Sleep is implicated in many neurological disorders from epilepsy to schizophrenia, but
simultaneous observation of the many brain components that regulate this behavior is difficult. We anticipate that this data
assimilation framework will enable better understanding of the detailed interactions governing sleep and wake behavior
and provide for better, more targeted, therapies.
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Introduction

Great strides have been made in understanding the physiolog-

ical basis for sleep regulation [1] in terms of the interacting

neuronal cell groups and their neurotransmitter mediated

interactions. This physiology is now increasingly being embodied

into complex mathematical models of sleep dynamics [2–6]. But

the limits to which these models are either validated or otherwise

utilized for insight and prediction is currently limited. Due to

physical and technological constraints, simultaneous measurement

of the physiology embodied in the models - such as cell group

firing rates and neurotransmitter concentrations - is not feasible in

freely behaving animals or people. We demonstrate here that such

models of the sleep-wake regulatory system can be put into a data

assimilation framework that allows for reconstruction and fore-

casting of unobserved dynamics from limited noisy measurements.

We anticipate these tools will help shed light on core brain

circuitry implicated in sleep disorders as well as sleep-related

neurological disorders such as epilepsy [7], bipolar disorder [8],

and generalized anxiety disorder [9].

Data assimilation is an iterative process that couples and

synchronizes mathematical models to observed system dynamics

with the purpose of estimating both noisy observed and

unobserved variables, as well as forecasting the future system

state. Data assimilation algorithms for nonlinear systems often

employ the ensemble Kalman filters [10]. One such ensemble

filter is the unscented Kalman filter (UKF), used in an iterative

prediction-correction scheme in which model-generated predic-

tions are corrected to agree with or track experimental observa-

tions [11].

The objectives of this article are to demonstrate data

assimilation applicability within the context of relatively high-

dimensional nonlinear biological models of the sleep-wake

regulatory system, and to investigate the observability properties

of these models [4,12]. In the Materials and Methods section, we

introduce these models, as well as the basic mathematics of the

UKF and parameter estimation algorithms. In the Results section,

we demonstrate the use of the UKF to reconstruct data generated

from these models. We introduce a reconstruction quantification

that allows one to gauge the relative observability of the model

variables. We demonstrate how this empirical observability

coefficient can be used to optimize UKF parameters such as

model covariance inflation, as well as how to select the optimal

variables for measurement. We then demonstrate a method for
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optimizing model parameters for tracking slowly varying dynam-

ics. Finally, we demonstrate that we can use measurements of

discretized sleep-state generated from the model, instead of specific

model variables, to reconstruct unobserved model dynamics.

Materials and Methods

Data assimilation is an iterative process that couples and

synchronizes mathematical models to observed system dynamics.

For illustration of the data assimilation framework and validation

of results, we use artificially generated data from the Diniz Behn

and Booth (DB) model [4] or its extension by Fleshner, et al.

(FBFD model) [12]. We then select a subset of the generated

variables, to which we add noise, as our measured data set. This

data set, with or without the correct parameters used to generate

it, is then passed to the UKF to reconstruct the unobserved states

(variables) and forecast future system states. Validation is carried

out by quantitatively comparing the reconstructed estimates and

parameters with the known original data set. A 4th order Runge-

Kutta estimate with an integration time of 0.5 seconds is used for

all simulations. The MATLAB code to produce each figure in the

Results section is available at ModelDB (http://senselab.med.yale.

edu/modeldb/default.asp) or can be provided by the authors upon

request.

Within this section, we describe both the DB and FBFD models

of the sleep-wake regulatory system. We then describe the main

features of the UKF and parameter estimation algorithms.

Physiology of Sleep
Recent advances in single and multi-unit recordings have

contributed to the growing knowledge of the mammalian sleep-

wake regulatory system. The current prevailing hypothesis

includes a flip-flop switch that regulates transitions between non

rapid-eye-movement sleep (NREM) and wakefulness (Wake) [1].

Gamma-aminobutyric acid (GABA)-ergic ventrolateral preoptic

nucleus (VLPO) neurons in the hypothalamus promote NREM.

Monoaminergic cell groups in the brainstem, including the

noradrenergic locus coeruleus (LC) and the serotonergic dorsal

raphe (DR) neurons, promote Wake. Mutual inhibition between

these two groups causes each to promote its own activity by

inhibiting the other’s. McCarley and Hobson [13] described

transitions between NREM and rapid eye movement sleep (REM)

arising from predator-prey like interactions between cholinergic

cell-groups in the brainstem, including the laterodorsal tegmentum

(LDT) and pedunculopontine tegmentum (PPT), and the mono-

aminergic cell-groups in LC and DR. For a more in-depth

overview of the literature, including controversial hypotheses for

REM regulation, see [14].

More recently, orexin and adenosine have been implicated in

further regulation of the sleep-wake system. Orexin producing

neurons in the lateral hypothalamus have descending projections

to all aforementioned monoamergic and cholinergic cell groups

and reinforce arousal, for a review see [15]. Extracellular

adenosine has been found to increase during prolonged

wakefulness in several cortical and subcortical regions [16], and

has been proposed as a homeostatic accumulator of the need to

sleep [17].

These dynamics are further modified by the circadian drive

[18], regulated by the suprachiasmatic nucleus (SCN) in the

hypothalamus, which sets a roughly 24-hour cycle affecting sleep

and many other physiological functions. The SCN has indirect

projections to the VLPO in the hypothalamus which results in

inhibition of sleep during the day [19]. Here day is subjectively

defined by species’ dependent diurnal behavior, and refers roughly

to 12-hour periods consisting mostly of active-wake behavior.

The SCN clock can be modulated by afferent cortical inputs in

response to a variety of external cues. Food restriction studies have

shown entrainment of the circadian cycle to food availability [20].

Light input from the melonopsin expressing ganglion cells in the

retina can also affect the SCN [21]. Retrograde trace studies have

shown that a number of central nervous system sites innervate the

SCN in the rat [22], though further study is needed to fully

elucidate the involved circuitry. For instance, it is well known that

lesions of the temporal lobe leading to epileptic seizures also affect

the circadian clock [23,24], but the relevant brain circuitry has yet

to be determined.

Diniz Behn and Booth (DB) Model of Sleep
The DB model [4], depicted in Fig. 1A, describes interactions

among five distinct neuronal populations: two Wake-active groups,

LC and DR; two groups in the LDT/PPT, one that is REM-

active, denoted R; one active both in Wake and REM, denoted

W/R; and one group active during NREM in the VLPO. As

illustrated in Fig. 1A, these cell groups communicate through

various transmitters: LC transmits norepinephrine (NE), DR

transmits serotonin (5-HT), the two groups in the LDT/PPT

transmit acetylcholine (ACh), and VLPO transmits GABA.

Excitatory thalamic input is modeled by the variable d and the

brain’s homeostatic sleep drive is represented by h. Sample output

of this model’s sleep-wake cycles, as well as mutual inhibition

between Wake and sleep-active regions is shown in Fig. 1B.

Each cell group is described by its firing rate (F) and the

concentration (C) of the neurotransmitter that it releases to post-

synaptic populations. Cell group firing rates are a function of their

input neurotransmitter concentrations, and evolve according to:

_FFX ~
FX?(IX ){FX

tX

ð1Þ

Here IX is a weighted sum of neurotransmitter i into cell group

firing rate FX , with coupling constants gi,X ;

Author Summary

Mathematical models are developed to better understand
interactions between components of a system that
together govern the overall behavior. Mathematical
models of sleep have helped to elucidate the neuronal
cell groups that are involved in promoting sleep and wake
behavior and the transitions between them. However, to
be able to take full advantage of these models one must
be able to estimate the value of all included variables
accurately. Data assimilation refers to methods that allow
the user to combine noisy measurements of just a few
system variables with the mathematical model of that
system to estimate all variables, including those originally
inaccessible for measurement. Using these techniques we
show that we can reconstruct the unmeasured variables
and parameters of a mathematical model of the sleep-
wake network. These reconstructed estimates can then be
used to better understand the underlying neuronal
behavior that results in sleep and wake activity. Because
sleep is implicated in a wide array of neurological disorders
from epilepsy to schizophrenia, we anticipate that this
framework will enable better understanding of the link
between sleep and the rest of the brain and provide for
better, more targeted, therapies.

Data Assimilation of the Sleep Regulatory Network
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ILC~gA,LCCA{gN,LCCN{gG,LCCGzd

IDR~gA,DRCA{gS,DRCS{gG,DRCGzd

IVLPO~{gN,VLPOCN{gS,VLPOCS{gG,VLPOCG

IR~gA,RCA{gN,RCN{gS,RCS{gG,RCG

IW=R~gA,W=RCA{gG,W=RCG

ð2Þ

In addition, tX is a first order process time constant. The steady

state firing rate, FX?(c), a function of input neurotransmitter c, is

given by maximum firing rate parameter Xmax, times a sigmoidal

function with midpoint bX and slope aX :

FX?(c)~Xmax(0:5f1ztanh½c{bX

aX

�g) ð3Þ

where bX is a constant for all cell groups except VLPO where

bVLPO is proportional to the homeostatic sleep drive h. The

concentration of neurotransmitter released by each cell group to

the post-synaptic space also evolves according to a first order

process with time constant ti and steady state neurotransmitter

concentration Ci? given by:

_CCi~
Ci?(FX ){Ci

ti

ð4Þ

Ci?~tanh(
FX

ci

) ð5Þ

where ci is an adjustable scale parameter.

Because ACh comes from both the R and W/R cell groups, the

total ACh concentration in the post-synaptic space is the sum of

the ACh concentrations generated individually from these groups.

Random excitatory projections from thalamocortical circuits to

the Wake-active populations LC and DR are modeled as

Poissonian impulses with a rate of 0.003 Hz, which through a

leaky integrator form another input concentration denoted d with

a decay constant of tdelta~10 seconds:

Figure 1. Computational models of the sleep-wake regulatory system and their outputs. A) Diniz Behn and Booth (DB) Model circuit
diagram, illustrating the cell groups, their output neurotransmitters, and connections. Inhibitory connections are represented by minus and excitatory
connections are represented by plus signs. Locus coeruleus (LC), dorsal raphe (DR), ventrolateral preoptic nucleus (VLPO), laterodorsal/
pendunculopontine tegmentum (LDT/PPT), gamma-aminobutyric acid (GABA), seretonin (5-HT), norepinephrine (NE), acetylcholine (ACh),
homeostatic sleep-drive (h), non rapid-eye-movement sleep (NREM), rapid-eye-movement sleep (REM). B) Typical output of the DB model for
three of the cell group firing rates, plus the scored sleep-state plotted as a hypnogram. C) Fleshner, Booth, Forger and Diniz Behn (FBFD) Model circuit
diagram, which expands on the DB model to include circadian modulation by and feedback to the suprachiasmatic nucleus (SCN), and allows for
diurnal variations in behavior with light periods dominated by sleep activities and dark periods by periods of extended awake activity. Dashed lines
indicate SCN additions to DB model. D) 36 hour hypnogram from the FBFD model, with 24-hour periodic CIRC input input to the SCN superimposed.
doi:10.1371/journal.pcbi.1002788.g001

Data Assimilation of the Sleep Regulatory Network
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_dd~{d=tdelta ð6Þ

In addition to firing rate and neurotransmitter concentration

variables, the homeostatic drive variable h regulates the duration

of sleep and wake bouts by changing bVLPO, the threshold for

firing of the NREM-active VLPO cell group. The accumulation of

h during Wake, and dissipation during sleep, is given by:

_hh~H½(FLCzFDR){hw�
1{h

thw

{H½hw{(FLCzFDR)� h

ths

ð7Þ

where H is the Heaviside function, hw is the threshold parameter

for the onset of increase or decrease in h, and ths and thw

determine the rate of accumulation and dissipation.

Typical output of the DB model is shown in Fig. 1B. The top

three traces are the time dynamics of the firing rates for the Wake-

active (LC), NREM-active (VLPO), and REM-active (LDT/PPT)

cell groups. Note that, following [4] we denote firing rate for the

REM-active LDT/PPT cell group as FR. The state of vigilance

(SOV), or sleep state, shown as a hypnogram in the fourth trace, is

determined by the rank-ordered comparison of these cell group

activities, with LDT/PPT activity dominating the definition.

Fleshner, Booth, Forger and Diniz Behn (FBFD) Model of
Sleep

Fleshner, Booth, Forger and Diniz Behn [12] introduced an

extension of the DB model that includes the SCN as an additional

cell group with GABA as its associated neurotransmitter [12],

depicted in Fig. 1C. The firing rate of the SCN cell group follows

the same dynamics as the cell groups in the DB model (Eq. 1). The

SCN has an inherent 24-hour circadian cycle (CIRC), with higher

activity during the 12-hour light phase and lower activity during

the 12-hour dark phase.

The projections from the sleep-wake network to the SCN

provide dynamical feedback that increases the SCN’s activity

during both Wake and REM and decreases its activity during

NREM. The SCN receives 5-HT and ACh synaptic inputs from

the core sleep-wake regulatory system through the variable SYN.

This is modeled by composing ISCN from the sum of CIRC and

SYN . Although the amplitude of SYN is smaller than that of

CIRC, its oscillation time-scale is faster, typically on the order of

minutes.

ISCN~CIRC(t)zSYN(t) ð8Þ

CIRC(t)~sin(2p(t{tdaybreak)=tday) ð9Þ

SYN(t)~gA,SCN CAzgS,SCN CS ð10Þ

Here tday~24 hours. We have shifted the phase of CIRC from

[12] by adding tdaybreak~6 to make the light period (CIRC high)

start at 6 am. Feed-forward projections of the SCN on the sleep-

wake network are mediated through GABAergic transmission,

modeled by the additional neurotransmitter concentration

CG(SCN), which adds into the dynamics of the LC, DR, VLPO,

and R firing rates, modifying Eq. (2) from the DB model to

become:

ILC~gA,LCCA{gN,LCCN{gG,LCCG{gG(SCN),LCCG(SCN)zd

IDR~gA,DRCA{gS,DRCS{gG,DRCG{gG(SCN),DRCG(SCN)zd

IVLPO~{gN,VLPOCN{gS,VLPOCS{gG,VLPOCG{

gG(SCN),VLPOCG(SCN)

IR~gA,RCA{gN,RCN{gS,RCS{gG,RCG{gG(SCN),RCG(SCN)

IW=R~gA,W=RCA{gG,W=RCG

ð11Þ

Typical output of the FBFD model on short time-scales is

similar to that of the DB model. But, as is typical for real rats, on

diurnal time-scales the typical duration times in different states, as

well as cycle times through states, changes. The hypnogram of the

output of this model is shown in Fig. 1D for a 36 hour period. Rats

are nocturnal. In the model, REM and NREM are primarily

observed during the putative light phase, while long periods of

Wake are observed during the putative dark phases.

Unscented Kalman Filter
The Kalman filter estimates the state of a system from noisy,

sparsely measured, variables. Kalman’s initial filter derivation [25]

was for linear systems. The unscented Kalman filter is an ensemble

version developed to tolerate nonlinearities without linearization

[26].

The details of the UKF algorithm can be found in many

standard textbooks [27,28]. We present here an overview, along

with the key equations needed to understand details presented

later in this manuscript.

State estimation with the UKF is carried out recursively using a

prediction-correction scheme. Each iteration starts with a best

estimate x̂xk of the current state x at iteration time tk. Included is

an estimate of the current uncertainty in state P̂Pxx,k. A prediction or

forecast is then generated by iterating an ensemble of points near

x̂xk, called sigma points, through the nonlinear model dynamics F .

Given a Dx dimensional state space for F , we choose 2Dx sigma

points such that they have covariance P̂Pxx,k to represent the state

uncertainty. We denote the ith sigma point xi,k prior to iteration,

and ~xxi,kz1 after iteration. The model prediction ~xxkz1 is then the

mean of the forward iterated sigma points:

~xxkz1~
1

2Dx

X2Dx

i~1

~xxi,kz1 ð12Þ

The prediction uncertainty ~PPxx,kz1 is then the covariance of these

points plus an additive covariance inflater matrix CI .

~PPxx,kz1~
1

2Dx

X2Dx

i~1

(~xxi,kz1{~xxkz1)(~xxikz1{~xxkz1)TzCI ð13Þ

CI is nonzero only on the diagonal, and is added to account for

underestimates of the forecast error, from the covariance of the

sigma points, due to process noise and inadequacies in the filter

model [29,30]. The prediction is then corrected to account for a

measurement ykz1 at time tkz1. y need not contain the same

number of variables as x. The correction factor weights the

observation and prediction according to the Kalman gain

Kkz1:

Data Assimilation of the Sleep Regulatory Network
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x̂xkz1~~xxkz1zKkz1(ykz1{~yykz1) ð14Þ

where ~yykz1 denotes the prediction mean from the estimated

sigma points for the observed variables, ~YYi,kz1 :

~yykz1~
1

2Dx

X2Dx

i~1

~YYi,kz1 ð15Þ

The Kalman gain is formed from the ratio :

Kkz1~~PPxy,kz1(~PPyy,kz1){1 ð16Þ

where ~PPxy,kz1 and ~PPyy,kz1 are formed from averages over the

sigma points, either in the full dimensional space of x or in the

subspace spanned by the measurements:

~PPxy,kz1~
1

2Dx

X2Dx

i~1

(~xxi,kz1{~xxkz1)( ~YYikz1{~yykz1)T ð17Þ

~PPyy,kz1~
1

2Dx

X2Dx

i~1

( ~YYi,kz1{~yykz1)( ~YYi,kz1{~yykz1)TzR ð18Þ

where R is the measurement uncertainty. The Kalman gain is

also used to correct - and ideally collapse - the prediction

uncertainty:

P̂Pxx,kz1~~PPxx,kz1{Kkz1
~PPxy,kz1 ð19Þ

Within this recursive scheme, the UKF synchronizes model

state to measurements and thereby improves the estimate of the

experimentally inaccessible variables. The limit to which this succeeds

depends in part on the relative observability of the reconstructed model variables

from the measured variables. We discuss below an empirical method for

assessing this relative observability. We note that R, the uncertainty of

the measurement process usually can be estimated, using the

assumption that measurement noise is normally distributed [31–

33].

On the other hand, the additive covariance inflation parameter

CI is less clearly defined. Some methods have been proposed to

estimate its values under the limited case that its source is an

additive process noise [34–38]. Within our results - we demon-

strate that even with identical system and model dynamics, non-

zero CI improves tracking, and present a method of optimally

choosing the values of CI for tracking and prediction.

Parameter Estimation
One approach for parameter estimation within the UKF

framework is to solve the dual problem of estimating parameters

and states at the same time, for instance via an augmented state

space approach [11]. The alternative approach is to separate state

reconstruction from parameter estimation by iteratively alternat-

ing between the two [39]. We found that dual estimation did not

work well for our high-dimensional sleep-models, likely in part due

to the many degrees-of-freedom when neither parameters nor

variables were fixed, and especially because in nonlinear systems

the sensitivity of the dynamics to particular parameters can be

highly dependent on location in state space. We therefore estimate

parameters iteratively over windows of length Twin that are longer

than a typical sleep-wake cycle of the dynamics.

Within our method, hidden states are first reconstructed with

the UKF using a filter model with initial best-guess parameters.

The full-state reconstruction over Twin is then used in a parameter

estimation step which yields an updated parameter set. This

updated parameter set is then passed to the UKF for the next

iteration. This process is repeated until the parameter estimate has

stabilized.

The parameter estimation step is essentially an application of a

multiple shooting method [11,40]. Within each window, we

estimate parameters by creating an average cost-function CF that

quantifies the divergence between short model-generated trajec-

tories x̂xtraj and the UKF-reconstructed trajectories for the measured

variables. We then minimize this cost-function with respect to the

parameter of interest. In order to prevent the model-generated

trajectories from diverging too far from the reconstructed ones, we

reinitialize x̂xtraj on the reconstructed trajectories at regular

intervals dT :

x̂xtraj(k)~~xx(k) where k~1 � dT ,2 � dT ,:::Twin ð20Þ

We then calculate a cost-function averaged over the window

Twin using the divergence between the model-generated trajecto-

ries x̂xtraj and x̂x:

CF~

ðTwin

0

(x̂xtraj{x̂x)T M(x̂xtraj{x̂x)dt ð21Þ

where M denotes a matrix with non-zero elements on diagonal

positions corresponding to measured elements. In order to

properly weight the errors for each variable, the non-zero

elements of M are set to the inverse of the standard deviation of

the associated variable. For our current implementation, we

perform a minimization with respect to parameters by explicitly

computing x̂xtraj(~pptraj) for test parameters ~pptraj~f~pp,~pp+Dpg and

then choosing the one with the minimum CF . We use a constant

value of Dp, and restrict our parameter update maximally to Dp
per iteration. Though somewhat computationally intensive, this

method yields a stable approach to a local minimum in CF . This

also limits the resolution to which the parameter can be estimated.

For estimation of non-stationary parameters, we use overlap-

ping windows, with an update period of TparamvTwin. We note

that Dp=Tparam should be greater than the maximal expected rate

of change of the parameter of interest, to ensure that parameter

dynamics are estimated with reasonable fidelity.

Results

Data Assimilation
We can accurately reconstruct unmeasured variables of the DB

model of sleep with the UKF framework. To demonstrate this, we

generate data from this model, then apply a noisy observation

function - the output of which is a noisy subset of the variables - to

mimic experimental conditions. We then reconstruct the unob-

served variables with the UKF. Finally, we validate this

reconstruction by comparing to the original data set.

An example of this procedure is shown in Fig. 2. Long

multivariate time series of sleep-wake data were generated from

the DB model. The observation function yielded a noisy univariate

version of the firing rate of the Wake-active LC region FLC .

Explicitly we added random, normally-distributed, zero mean

Data Assimilation of the Sleep Regulatory Network

PLOS Computational Biology | www.ploscompbiol.org 5 November 2012 | Volume 8 | Issue 11 | e1002788



noise with variance of 4% that of the variance of FLC to the true

values. We provided the framework the parameters used to

generate the original data, and either default values (left panels) or

optimized values (right panels) for the covariance inflation

parameter CI . Default values of CI were chosen as 10{5 times

the typical variance of each variable. Additionally, the initial

conditions of the model state, x̂x, were arbitrarily chosen in each

case.

Shown in Fig. 2 are the reconstructed (red) and true (black)

values of the NREM-active firing rate variable FVLPO, the REM-

active firing rate variable FR and the stochastic thalamic noise

variable d. In both cases of tracking, reconstruction of the

observed variable FLC is good. This can be seen from the closeness

of the reconstructed traces to both the observation points, shown

in blue, and the true values in black. Likewise, the reconstruction

of FVLPO also tracks the true state quite well.

However, for the default values of CI , FR is not reconstructed as

well, and d is not reconstructed at all. These errors extend to lower

reconstruction fidelity of FVLPO and even of FLC . On the other

hand, when we use optimized CI values the reconstruction of FR is

improved. In addition, much of the thalamic noise input through d
- which is stochastically driven and receives no input from the

other variables - is now represented. For these reconstructions, we

initialized the model state far from that of the true system state.

Therefore, there is a transient period during which reconstruction

is poor. In our experience, once the model state comes close to that

of the true system, this data assimilation framework keeps the

model relatively close to the system state.

Quantification of reconstruction fidelity and

observability. Visual inspection of the similarity between the

reconstructed and true dynamics is only a qualitative result. We

therefore use the mean square difference between the reconstruct-

ed (x̂xi) and true (xi) values for each variable to quantify the

accuracy of state reconstruction. We normalize this error by the

variance of each variable’s dynamics to form e2
i , a normalized

mean square error for the ith variable :

e2
i ~

S(xi{x̂xi)
2T

var(xi)
ð22Þ

For perfect reconstruction, e2
i ?0. Its maximum depends on the

ratio of the full range of the variable to the square root of its

variance. For typical variables of the DB model this is of order 3,

Figure 2. Reconstruction of DB Model Dynamics (A) with default values for covariance inflater CI , and (B) after optimization of CIFR

and CId. Noisy measurements of FLC (blue) were passed to the unscented kalman filter (UKF) framework to track and reconstruct all other variables.
Shown are the firing rates for the Wake-active (LC), NREM-active (VLPO), and REM-active (LDT/PPT) cell groups, along with thalamic noise d. The
framework was given the same parameters used to generate the original data. In both A and B the same data was tracked with model initial
conditions chosen randomly. After a transient period, reconstructed (red) Wake and NREM dynamics are close to true (black) dynamics. Without CI
optimization the dynamics of d are essentially ignored. After CI optimization at least some of the stochastic d dynamics - those that measurably
affect the dynamics of FLC - are reconstructed and reconstruction of REM dynamics is improved.
doi:10.1371/journal.pcbi.1002788.g002
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though for some such as d it is *15. For visualization and

regularization purposes, we therefore use the inverse of 1ze2
i ,

which is bounded between [0,1] as a reconstruction fidelity metric.

The reconstruction fidelity of any particular variable may

depend on framework parameters such as integration or recon-

struction time step, covariance inflation, as well as qualities that

are inherent to the model dynamics such as its observability.

Observability is a structural property of a model defined as the

ability to recover the model state through the observation of one or

more of its outputs [41]. It is well known that not all variables can

be used as observables to reconstruct the full dynamics.

Nonetheless, information regarding the partial observability of

each variable can be used to choose the optimal variable for

measurement in the UKF framework.

In Fig. 3, we show the reconstruction fidelity for each variable

(down the columns) as a function of observation variable (across

rows), in matrix format. We have used constant default values for

CI , the covariance inflation parameter, relative observation noise

R of 4% of the variable’s variance, and no thalamic noise d. In this

color coded plot, red indicates good reconstruction, and blue

indicates poor reconstruction.

The diagonal values in this matrix indicate how well a particular

variable is reconstructed from itself. Though these tend toward the

maximum, they are limited both by the noisy observation as well

as the influence of the unobserved variables. Better reconstruction

of the full dynamics is indicated by a column that has more red in

it. To that extent the best observables for reconstruction are either

FR, the firing rate of the REM-active group, or its synaptic output

CA(R). Likewise, the relative reconstruction of a variable from

other variables can be gauged by the colors across its row.

Given observation of FLC , the best reconstructed variable is

FW=R, the firing rate of the Wake/REM-active cell group,

although several other variables are reconstructed quite well

according to high values down the column marked FLC . The worst

reconstructed variables are FR and its synaptic output CA(R). We

interpret this to mean that FR is relatively less observable from FLC

than is FW=R. Furthermore, we assert that this is a useful empirical

metric for gauging the partial observability of the state space from

a measured variable, and name it the Empirical Observability

Coefficient (EOC):

EOCi,j~
1

1ze2
iDj

ð23Þ

where e2
iDj is the normalized reconstruction error for variable i

given measurement j. Note for figure labels, we have left off the

conditional reference to the measurements.

From the fourth column of the EOC matrix shown in Fig. 3, we

observe that FR is reconstructed well only if we observe FR or

CA(R), the concentration of ACh that this group transmits to the

synaptic space. The poor reconstruction of FR is in part due to

symmetries in its dynamics. CA(R) is summed together with

CA(W=R), the concentration of ACh transmitted from the Wake/

REM-active cell group. As seen in Eq. (2), the total concentration

of ACh CA, then appears as one of the input transmitters to the

Wake-active, REM-active, and Wake/REM-active cell groups.

For further discussion of the effect of symmetry on observability

and time series reconstruction, see [42].

We did not include dynamics of the thalamic noise variable d in

the model used to generate the EOC to highlight patterns in the

EOC that would be obscured in the presence of this variable.

We note that this empirical observability is related to the model

used in the UKF framework, not the true dynamics of the system

being tracked. In other words, we assess observability in the model.

Assuming that the model represents some of the underlying true

system dynamics, then those aspects of the true system will also be

observable. The computation of the EOC should be done from

data generated from the model, not from observed data of the true

system.

EOC Optimization of Covariance Inflation Parameter
We can find optimal framework parameters, such as the UKF

covariance inflation parameter matrix CI , by maximizing EOC
values. Although the matrix CI only has nonzero diagonal terms

CIi, for the full DB model including the thalamic noise output

variable d, there are 12 CIi’s. So blind simultaneous optimization

is inefficient. But we can use the full EOC, and the ranked partial

observability, as a guide to this optimization.

Note from Eq. 13 that CIi adds to the diagonal elements of the

covariance of the sigma points. This inflation has the effect of

widening the sigma points on the next iteration step, which results

in an increase in the Kalman gain. Larger values for the Kalman

gain bias the correction towards the measurements.

Our general rule therefore is that if measurement of a variable k
yields poor reconstruction of other variables - i.e. low values of

EOCi,k down a column - then we should favor measurement derived

values of other variables over model derived ones, and therefore

should use increased values of CIk. On the other hand, if a variable k is

not reconstructed well from other variables - i.e. low values of EOCk,j

across the row - we should favor model derived values over

measurement derived values for this variable by decreasing CIk.

We iteratively compute the EOC, then choose the variable k
with the lowest scores down a row or column, and change its

corresponding CIk appropriately. We then recompute the EOC
and repeat. This prevents us from optimizing with respect to CIk’s

that have only modest impact on reconstruction fidelity.

There is a finite usable range for CIk. As an inflater for the

covariance matrix Pxx, CIk must be greater than or equal to zero.

The standard deviation and range of the dynamics of variable k

Figure 3. Empirical Observability Coefficient (EOC) matrix. EOC
for the DB model with no thalamic noise and default values of CI .
EOCi,j is an empirical measure of how well variable i is reconstructed
from measurement of variable j. EOCi,j[½0,1� with perfect reconstruc-
tion being 1. Here EOC was computed using 12 hours of data. From
the EOC matrix, we observe that FR (row) is poorly observed - poorly
reconstructed - from most variables, although its measurement
(column) yields good reconstruction of almost all other variables.
doi:10.1371/journal.pcbi.1002788.g003
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are two natural scales that can be used to define the usable range

of CIk. We use the square of the former, multiplied by a

proportionality constant, as a default starting value for CIk. The

square of the latter forms the maximum for CIk.

We now demonstrate this algorithm to optimize reconstructions

given measurements of FLC , as in Fig. 2B. The full EOC for the

DB model - including d - with default CI is shown in Fig. 4A.

From the far right column, we observed that no variables are

reconstructed well from measurements of d. This is understand-

able, since the dynamics of d receive no input from any of the

other variables. Therefore we start our optimization of CI by

adjusting CId, and explicitly expect to increase it.

Shown in Fig. 4D is EOCd,FLC
as a function of increasing CId.

Although only the trace for d is shown, EOCi,FLC
increases for

most variables as a function of increasing CId. We pick optimal

values for CId based on the average peak reconstruction of all

variables from measurement of FLC , found with a value of

CId~0:06 � var(d). The EOC matrix after this first CI optimi-

zation iteration is shown in Fig. 4B.

Notably, although FLC is the variable measured from the real

system, its reconstruction improves when CId is increased. This

effect can be further understood by inspection of Fig. 2. The brief

increases in FLC from its low value - interpreted behaviorally as

brief awakenings that correlate with spikes in d in Fig. 2, are

better reconstructed with optimized CId. Indeed, the EOC

matrix values overall, shown in Fig. 4B, have increased with

increasing CId.

Now the row/column with the lowest values, on average,

corresponds to reconstruction of FR. Therefore we expect to need

to decrease CIFR
to improve reconstruction. Reconstruction

fidelity of FR from measurement of FLC , as measured by

EOCFR ,FLC
is shown in Fig. 4E as a function of CIFR

.

Reconstruction improves with decreasing values over the potential

usable range. As shown by the black horizontal line, the best

reconstruction is achieved using the minimum value of 0 for CIFR
,

although values of CIFR
smaller than the default value of 10{5

result only in marginal reconstruction improvement. This second

optimization step yields only marginal improvement in the overall

EOC matrix shown in Fig. 4C. In part, this lack of improvement

in reconstruction is due to the poor observability of REM

dynamics through other variables as apparent from the row

marked FR in Fig. 3.

Empirical Observability and Choice of Measured Variables
We investigated pairings of two or more variables with respect

to their relative partial observability. We found that for the DB

and FBFD models, the empirical observability of variable i given

measurements of variables j,k is always at least as good as the

individual EOC: EOCi,(j,k)§maxfEOCi,j ,EOCi,kg. We also

observed that good reconstruction of all variables requires some

Figure 4. Optimization of Covariance Inflater CI . Although the individual EOCs are metrics of reconstruction fidelity, the ranked observability,
from the full EOC can be used to guide optimization of the covariance inflater CIk : Poorly observed variables across their rows - low EOCk,j - should
have decreased CIk . Variables whose measurement yields poor reconstruction columnwise- low EOCi,k - should have increased CIk . Algorithmically,
we iteratively adjust CIk for the variable k with the overall lowest mean row or column. In A–C are shown the EOC matrix after each optimization
iteration for the full DB model with thalamic noise. A) EOC computed with default values for CI , i.e. CIk~10{5var(k). Note that the lowest mean
row/column corresponds to the measurement of d, therefore we optimize CId first. B) EOC after optimization of CId . C) EOC after optimizing CIFR

.
Shown are EOCi,FLC

as a function of D) CId for optimization step between A and B and E) CIFR
for optimization steps between B and C. Optimal

values of CIi are chosen from the peaks of these plots.
doi:10.1371/journal.pcbi.1002788.g004
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measurement of both Wake and REM dynamics. These states are

readily observed from real biological systems from external

physiological measurements such as power bands in the EEG,

muscle tone, and eye movement. Therefore, for the subsequent

computations, we assimilate noisy measurements of both Wake-

active FLC and REM-active FR dynamics, and use them to

reconstruct the full system state and derive parameter values.

Parameter Fitting
As applied here, the UKF framework requires both a model for

the dynamics as well as the model’s parameters. We have

implemented a version of a multiple shooting method [11] for

optimizing the choice of parameters. The performance of this

method is illustrated in Fig. 5.

For illustration purposes we generated data with fixed

parameters and assimilated noisy measurements of FLC and FR

to reconstruct the dynamics. Initially, all model parameters in the

UKF were set to the same values used to generate the true data set

- except the parameter gALC that couples ACh into FLC dynamics.

To this we supplied an arbitrary initial value.

Parameter estimation is performed by minimizing the distance

between the UKF reconstructed traces and short model-generated

trajectories that originate on the reconstructed traces. For these

computations, we set the length of these short trajectories at

2 minutes. This is long enough that differences in parameters

result in measurable divergence between the short computed

trajectories and the reconstructed dynamics. Here measurable is

much larger than the measurement noise, but not so large that the

distance between the computed and reconstructed trajectories

becomes comparable to the range of the state space.

To sample the full state space, each step of this minimization

averages this divergence over time windows longer than the sleep-

wake cycle time of the dynamics. As seen in Fig. 5A, our

estimation of gALC converges to the true value. In Fig. 5B, we plot

trajectories for the short model-generated (magenta), reconstructed

(red), and true (black) FLC dynamics for different periods of the

convergence of gALC . Note that initially, for gALC significantly

different than the true value, the short trajectories diverge quickly

from the reconstructed values, and the reconstructed values of FLC

are different from the true ones. When gALC approaches the true

value, both the short model-generated and reconstructed trajec-

tories approach the true dynamics.

As coded, the parameter estimation essentially optimizes short

model-generated forecasts. To investigate the effect on recon-

struction fidelity, we compute the normalized mean square

reconstruction error e2
i for each variable, averaged over each

parameter estimation window. This is shown for variables FLC ,

FW=R, and the homeostatic drive h. We note that for initial values

Figure 5. Parameter estimation with multiple shooting method for reconstruction of DB model from measurement of FLC and FR

with unknown value for parameter gALC . Parameter estimation is performed by minimizing the divergence between the UKF reconstructed
dynamics and short model-generated trajectories that originate on the reconstructed trajectories. To sample the full state space, each step of this
minimization averages this divergence over time windows longer than the cycle time of the dynamics. Here we use half hour windows, with 80%
overlap. A) Convergence of the estimated parameter gALC to the true value. B) Trajectories for the short model generated (magenta), reconstructed
(red), and true (black) FLC dynamics for different periods of the convergence of gALC . Note that initially, for gALC significantly different than the true
value, the short trajectories diverge quickly from the reconstructed values, and the reconstructed values of of FLC are different from the true values.
When gALC approaches the true value, both short model-generated and reconstructed trajectories approach the true values. C) Reconstruction
metric e2

i computed for each data assimilation window for three of the variables. As a reference point, the reconstruction metric for the original noisy
observation of FLC is shown in blue. Note that although the parameter estimation essentially optimizes short model generated forecasts, it has the
effect of optimizing hidden variable reconstruction.
doi:10.1371/journal.pcbi.1002788.g005
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of this parameter, even reconstruction of the measured variable

FLC is quite poor - with typical errors w30% of its standard

deviation. As a reference point, the initial measured data - a noisy

version of FLC - has a normalized mean squared error

e2
FLC,meas

~0:04, shown as a horizontal blue line. As the estimated

parameter converges, e2
FLC

falls well below e2
FLC,meas

, and the

reconstruction metric improves for all variables.

Dynamical Parameter Tracking
We can also estimate parameters which change slowly over

time. We demonstrate this by using a slightly modified DB model,

which lacks any circadian dynamics, to reconstruct dynamics

observed from the expanded FBFD model which specifically

includes SCN driven circadian oscillations. We use this modified

DB model to assimilate noisy measurements of FLC and FR from

the full FBFD model, and use it within the multiple shooting

method to estimate the value of CG(SCN).

An example of the output is shown in Fig. 6 for a 1.5 day period.

We have skipped the initial 12 hours which includes a transient

period of convergence of both the filter and the parameter estimate.

The effect of the SCN is to modulate the overall sleep cycles, with

frequent sleep periods that include REM in the light period and

dominant, longer Wake periods in the dark period. Short example

time series for FLC and FVLPO are shown in the panels in Fig. 6A for

different phases of the circadian cycle. The filter model in the UKF,

also used in parameter estimation, is missing these SCN associated

variables and the fast feedback oscillations resulting from their

interaction with the sleep network. However, we replace the input

contribution of the SCN’s feed forward GABAergic projections on

to the sleep network to a single quasi-static parameter CG,SCN that

gets added to other neurotransmitter variables in Eq. (11). We then

estimate this parameter which represents the presumed SCN drive.

The estimated value for CG,SCN (magenta) is shown in Fig. 6B,

along with the true input from SCN in the generating model

(black). Though the reconstructed parameter is an estimate with

inherent averaging over half-hour periods, and therefore does not

reproduce the fast dynamics of the real SCN input, it tracks the

mean value quite well. In addition, it yields good reconstruction of

the model variables. Examples of the normalized reconstruction

error, averaged over the fitting windows, are shown in Fig. 6C for

sample variables. Here again, as a reference point, we plot the

mean squared error for the noisy measurement of FLC (blue line)

in the top panel of Fig. 6C. Note that even reconstruction of the

homeostatic sleep drive h, which has no direct coupling to the

observed variables, is quite good over most of the day.

Reconstruction from the Hypnogram
So far, we have implemented the data assimilation framework

using measurements that amount to noisy versions of the true

Figure 6. Parameter Tracking to accommodate circadian dynamics. Noisy measurements of FLC and FR from the full FBFD model were
assimilated with a version of the DB model that represented input from the SCN as a quasi-static parameter CG,SCN whose value was estimated and
tracked in 80% overlapping half hour windows. SCN activity imposes circadian and light-driven dynamics that modulate sleep-wake cycles and
prevalence of either sleep or wake activity. A) Short excerpts of reconstructed dynamics for various phases of the circadian cycle. B) Estimated
(magenta) and true (black) value of the tracked parameter CG,SCN . Note that the tracked value is an estimate, with inherent smoothing on the time
scale of a half hour, and therefore does not reconstruct all of the detailed dynamics of the true value which oscillates due to the interplay between
the core sleep-wake regulatory cell groups and the SCN. C) Normalized reconstruction error for various variables. As a reference, the reconstruction
error for the noisy FLC measurement is shown in blue. The reconstruction of unobserved variables FW=R and homeostatic sleep drive h is quite good

as indicated by small e2 values.
doi:10.1371/journal.pcbi.1002788.g006
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variables. In real applications, when one uses observations from

real systems, the actual system measurements might only remotely

resemble variables in the tracking model. But even in this case,

data assimilation methods can still be used. To this end, we

demonstrate that we can use measurements of state-of-vigilance

(SOV) generated from the model and illustrated in Fig. 1B, to

reconstruct the unobserved model dynamics with reasonable

fidelity.

The method we have implemented is illustrated in Fig. 7. We

sleep-score the model-generated data, also used in Figs. 2–5, by

assigning an SOV to each point as a function of time. The SOV is

determined based on relative values of FLC , FVLPO, and FR. We

then take the filter model, and generate example data, which we

also sleep-score. From this scored filter-model data, we compute

the probability distribution functions (pdf) for the variables FLC ,

FVLPO, and FR conditioned on SOV. These are illustrated in

Fig. 7A. Note that these state-dependent distributions are highly

skewed, and have small variance around the mean.

The observation function from the measured values - here SOV

as a function of time shown in Fig. 7B - must provide values and

error estimates of variables in the filter model to the UKF. To

translate the observed SOV to inputs to the UKF, we use the state-

conditioned medians from the above-generated pdfs, and then use

the state-conditioned standard deviations as the measurement

uncertainties. In this way, we use observations of SOV to infer

observations of the model variables. We then use these observa-

tions, shown for FLC in blue in Fig. 7C, as inputs to the UKF.

Note that in this case, the measurement noise estimates are time

dependent. After a short transient convergence time, the

reconstructed dynamics converge close to the true dynamics.

However, certain details such as brief awakenings and transitions

into NREM are not reconstructed well.

We can likewise apply all the other tools described here to

assimilation of SOV data through this inferred observation

function. Shown in Fig. 8 is the same parameter estimation

procedure as shown in Fig. 5, with the same initial conditions for

unknown parameter gALC . Although the convergence is not as

good as with direct observation of FLC , the estimated parameter

does approach the parameter used to generate the data. The

reconstruction error in FLC decreases as the parameter approaches

its correct value, however neither converge all the way. This can

be understood because the UKF attempts to constrain the

observed variables to the median values mapped from the SOV.

Likewise, the parameter estimation algorithm attempts to mini-

mize the error between model forecasts and reconstructions for the

observed variables.

As a supplemental performance metric, we also consider the

reconstruction error if we simply use the median observation map

for all variables as our reconstruction. These are plotted as

horizontal dashed lines for each variable in Fig. 8C. The UKF

reconstruction error for the observed variable FLC improves

beyond this reference point as parameter estimation improves. In

contrast, the UKF reconstruction errors for unobserved variables

such as FW=R and h are overall far better.

Figure 7. Reconstruction of DB dynamics from measured hypnogram. SOV is used along with an inferred observation function to translate
an observed hypnogram into state conditioned observations for FLC , FVLPO, and FR, and their variances. We use the UKF to reconstruct the full
variable state space from these observations. A) Probability distributions of firing rates for FLC , FVLPO and FR during Wake (black), NREM (red), and
REM (blue). These firing rates were generated from the filter-model. B) Hypnogram of observed SOV for a 1 hour time series, with colors to match (A).
C) Reconstructed (red) and true (black) traces for FLC , FVLPO, FR, and h. The inferred observation for FLC is also shown (blue). After a transient period,
the reconstruction converges to the true value, even for the homeostatic drive variable h which was not observed. However, details of the dynamics
that are not accounted for by the state-of-vigilance (SOV) such as brief awakenings and transitions into and out of NREM are not reconstructed well.
doi:10.1371/journal.pcbi.1002788.g007
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Discussion

Data assimilation is a valuable tool in the study of any complex

system, where measurements are incomplete, uncertain, or both. It

enables the user to take advantage of all available information

including experimental measurements and short-term model

forecasts of a system. Since the introduction of the UKF to

neuronal dynamics by Voss et al. in 2004 [11], a few investigators

have applied these methods to the study of biological systems [43–

48]. Other data assimilation techniques have also been successfully

applied to study neuronal dynamics [49]. Nevertheless, the sleep

modeling community has yet to utilize these resources. Several

important advantages of data assimilation in sleep modeling are :

1) access to unmeasured variables to create a more complete

estimate of model state 2) subject-specific parameter estimation

even when the parameter is associated with an unobserved

variable 3) allowance for uncertainty in model structure or

measurements and 4) prediction of future dynamics.

Not all variables perform equally in reconstructing the state

space. In biological experiments utilizing data assimilation it would

be beneficial to have some insight into the relative performance of

each variable so that we can choose the best one or ones for

measurement. A natural metric to guide this choice is the

observability of each variable. Letellier et al. showed in [50] that

observability and ability to synchronize are related. Since the UKF

is basically a synchronization scheme, it follows that reconstruc-

tion-performance by any variable should be a function of its

observability. Thus we propose using observability based metrics

in the study of partially observed biological systems.

Analytical methods to determine observability for nonlinear

systems are mathematically rigorous, require rational models, and

generally do not produce graded values for partial observability.

Letellier et al. [51,52] proposed a simple algebraic solution to rank

all variables of a system according to their relative partial

observability. Although their approach works well for low-

dimensional systems, we found it problematic for our high-

dimensional sparsely connected system, where many variables are

directly coupled to just one or two other variables, and where the

coupling is effectively on only in highly localized regions of state

space.

Inspired by their work, we developed an empirical metric, the

EOC, to rank the partial observability of each variable based on

reconstructed error. The EOC can be used to select the optimal

observed variable to obtain the best estimate of a particular

unobserved variable. The absolute optimal observed variable

receives as input to its dynamics unambiguous invertible

information about the state of the unobserved variable. Here

invertible implies a one-to-one (bijectvie) relationship between the

unobserved and observed variables. In complex networks, this

observability is modulated by the number and relative weights of

additional unobserved variables in the system that couple into the

dynamics of the observed variable [50–52].

Because the EOC is a measure of reconstruction fidelity, we

demonstrate that the reconstruction framework parameters can be

optimized by improving it. Importantly, we described an intuitive

approach to use the EOC to optimize the covariance inflation

parameters CI . Although some analytical methods have been

proposed for this task in nonlinear systems [34–38], we are

Figure 8. Parameter estimation from observed hypnogram for reconstruction of DB model from inferred measurement of FLC ,
FVLPO, and FR with unknown value for parameter gALC . A) Convergence of the estimated parameter(magenta) to the true value (black). B)
Trajectories for the short model-generated (magenta), reconstructed (red), and true (black) FLC dynamics for different periods of the convergence of
gALC . C) Reconstruction metric e2

i computed for each data assimilation window for three of the variables. Horizontal dashed lines correspond to e2
i

computed from the state-conditioned discrete map used to translate the SOV to model space. Note that once the parameter is optimized, the UKF
reconstruction far outperforms the observation map.
doi:10.1371/journal.pcbi.1002788.g008
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unaware of an observability-based metric for covariance inflation

optimization.

Correct parameter estimates aid the prediction of future

dynamics and model selection and verification and can provide

useful biological information. A common method for parameter

estimation in nonlinear models utilizes a feedback-synchronization

scheme, developed by [53] and extended by [54–58] and many

others. Within such a scheme, two identical - except for unknown

parameters - systems are unidirectionally coupled, and are

continuously synchronized through error feedback. The parame-

ters of the responder are allowed to vary - often using a gradient-

decent approach - to minimize a cost function based on driver-

responder distance. Although these methods have been shown to

work well for systems with smooth variables we found that the

sharp transitions in our firing rates, and the highly variable

sensitivity of the dynamics to particular parameters as a function of

position in state space, resulted in unstable and inaccurate

parameter estimates.

We therefore adopted a multiple shooting parameter estimation

method [11,40] that estimates divergence of short model forecasts

from the UKF reconstructed trajectories over time windows long

enough to explore the state space. This estimation step involves the

minimization of a least-squared error, and can therefore be cast as

a maximum-likelihood step. This is done in an iterative fashion to

update parameter estimates by minimizing divergence of trajec-

tories reconstructed using previous parameter estimates. Therefore

this method becomes an expectation-maximization method, with

all the associated global optimization implications [59,60].

Estimation of one or more parameters with any parameter

estimation method will be inherently limited by the identifiability of

the state space. Identifiability is a structural property of a model

defined as the ability to identify a unique set of parameter values

given error-free observations of the dynamics [61]. A comparable

experimental or empirical version of identifiability has also been

discussed by[62–65]. If some parameters are not structurally

identifiable no parameter estimation method will prevail. Our

experience and expectation is that the multiple shooting method will

converge reasonably for combinations of identifiable parameters,

but the convergence time increases with the number of parameters.

A key advantage of using the UKF for state reconstruction is

allowance for uncertainties in the model and/or measurements. As

noted, the Kalman filter is an iterative prediction-correction

scheme. By altering the elements of the covariance inflation

parameters CI and measurement uncertainty R, we can guide the

Kalman filter to favor either the observations or model predic-

tions. Higher values of CI downgrade the model-based forecasts

during the correction step. We utilized this when developing the

method for optimizing choice of CI values based on the EOC. For

those variables that are poorly observed from others, we more

heavily weight prediction over measurement; for those that yield

poor reconstruction of other variables, we more heavily weight

measurements.

Furthermore, as we showed in Fig. 6, inadequate models -

which omit the full dynamics of certain variables - can be used to

successfully assimilate experimental data and estimate unknown

dynamics. In this example, we used a model that lacked any

circadian dependencies to correctly estimate a 24-hour cycle and

the mediated interaction with the SCN. Therefore our data

assimilation framework can tolerate inadequate models and

uncover dynamics outside the scope of the model’s governing

equations.

Several issues must be considered for assimilation of biological

measurements. First, initial values for the filter parameters should

be estimated off-line via the iterative reconstruct state/estimate

parameter approach. During this off-line learning process, non-

arbitrary initial values for the covariance matrices as well as model

parameters can be determined. Second, we will not have access to

many of the state variables for validation. Previously, we

developed a system that can automatically stage the behavioral

state of a freely moving animal in real time [66], based on

measurements of EEG and head acceleration with a resolution of a

few seconds. This process can validate the UKF’s predictions of

sleep-state transitions. We can also use the scored behavioral state

to infer the value of the Wake-active, NREM-active, and REM-

active firing rate variables. As we have shown in Fig. 7 and Fig. 8,

we can then use these inferred measurements to reconstruct

hidden variables and estimate unknown parameters.

It is technically feasible to measure extracellular neurotrans-

mitter concentrations using either dialysis or electrochemical

sensors. Dialysis measurements do not have the temporal

resolution to resolve REM dynamics, which occur on the order

of one minute or less in the rodent, or the spatial specificity to

localize dynamics to sleep-wake nuclei in the rodent brain.

However these measurements could be used to track and validate

slow systemic dynamics such as the circadian variations that

modulate the sleep-wake nuclei. In contrast, off-the-shelf electro-

chemical sensor technology [67] allows for highly localized

measures of neurochemicals such as ACh and 5-HT with sub-

second temporal resolution and sub-mm spatial resolution. Such

measurements can and should be used to establish and validate

models used within the data assimilation framework. In addition,

they can be used to identify the subset of measurements that can

be accurately reconstructed from less costly observations. An

appropriate cost-function for biological data assimilation would

balance the degree of reconstruction inaccuracy against the cost of

obtaining risky or hard-to-access measurements.

We also note that this framework could potentially be used to

choose among model dynamics. Our parameter estimation

methods rely on a minimization of prediction error. A similar

metric or cost function could be utilized to differentiate between

UKF-based tracking and prediction of system dynamics utilizing

different models with such a filter framework.

In conclusion, we have presented a data assimilation framework

for combining sparse measurements together with a relatively

high-dimensional nonlinear computational model to reconstruct

unmeasured variables, and have demonstrated its use in the

context of a model of the sleep-wake regulatory system. We have

demonstrated with simulation studies that once the tracked state

approaches the true system state, it reliably reconstructs the

unobserved system state (Fig. 2). We have introduced a metric for

ranking relative partial observability for computational models

(Fig. 3) that allows us not only to assess reconstruction

performance based on choice of measurement, which can serve

as a guide to which system variables to measure, but also provides

a methodology for optimizing filter framework parameters such as

the covariance inflation (Fig. 4). In addition, we have demonstrat-

ed a parameter estimation method (Fig. 5) that allows us to track

non-stationary model parameters and accommodate slow dynam-

ics not included in the UKF model such as circadian-dependent

input from the SCN (Fig. 6). Finally, we have demonstrated that

we can even use observed discretized SOV, which is not one of the

model variables, to successfully reconstruct model state (Figs. 7–8).

These key features will aid in the transition of this framework to

the experimental bench. Our long-term plan is to develop an

observer-predictor system that will track and predict sleep-wake

cycles as well as the underlying state of the neural cell groups and

their neurochemical environment. Because these system dynamics

are implicated in and interact with numerous neurological diseases
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from epilepsy to schizophrenia, we anticipate that these tools will

enable better understanding of the detailed interactions and

provide for better, more targeted, therapies.
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